Maths Module 1: Numbers

Contents

1. Whole Numbers - Page 2
   - Place value
   - Multiplication and Division
   - Rounding
   - Order
   - Addition and Subtraction

2. Factors and Multiples - Page 7
   - Factors
   - Indices
   - Multiples
   - Highest Common Factor
   - Prime Numbers and Prime Factors
   - Lowest Common Multiple

3. Negative Numbers - Page 10
   - Positive and Negative Numbers
   - Addition and Subtraction
   - Temperatures
   - Multiplication and Division

4. Decimals - Page 12
   - Decimal Point
   - Metric Units
   - Addition and Subtraction
   - Decimal Places and Rounding
   - Multiplication and Division

5. Fractions - Page 16
   - Proper Fractions
   - Fractions and Decimals
   - Improper Fractions and Mixed Numbers
   - Addition and Subtraction
   - Equivalent Fractions
   - Multiplication and Division
   - Simplifying and Ordering

6. Percentages - Page 25
   - Percentages, Fractions and Decimals
   - Percentage Increase and Decrease
   - Percentages and Quantities
   - Compound Percentage Problems

7. Ratio - Page 30
   - Comparing Quantities
   - Finding and Sharing Quantities
   - Simplifying
   - Maps

8. Indices - Page 32
   - Positive and Negative Indices
   - Significant Figures
   - Standard Form
   - Square roots and Surds

9. Estimation - Page 36
   - Significant Figures
   - Upper and Lower Bounds

Glossary - Page 38

Assessment - Page 39
1. Whole Numbers

1.1 Introduction
A whole number is a number with no fraction or decimal part, 100, 250 and 1000 are whole numbers.

Think
When do we use whole numbers in our everyday life? Think of some examples.

Dave is very bad at Maths. One day he went to the market and spent 230 kyat on vegetables. He paid with a 1000 kyat note. The shopkeeper gave him 770 kyat change.

Dave took the money and went home.

He made a mistake. What was it?
He would not have made this mistake if he was good at maths.

1.2 Place Value
The position of a number tells us its value.

1. Whole Numbers
What is the value of the 8 in this number?
What about the 4?
Write the number in words.

Practice
i. Write these numbers in words
   a) 204   b) 1023   c) 9552
   d) 10,256  e) 81,505  f) 370,000

ii. Write these numbers in figures
   a) seven hundred and five
   b) two thousand six hundred and fifty two
   c) twenty two thousand five hundred
   d) one million two hundred and fifty seven thousand

iii. Make as many different numbers as you can from the figures 2, 6, 7, 0, 3. Arrange the numbers in order, starting with the smallest.

1.3 Rounding
We don’t always need to know a number exactly. Sometimes we use rounding to give an estimate.

Example - The population of Ming Town is 48,492.
To round to the nearest hundred we look at the number in the tens column.
It is greater than 5 so we round up. To the nearest hundred the population of Ming Town is 48,500.

Practice
a) What is the population of Ming Town to the nearest thousand. Did you round up or down? Why?

Think
Think of whole numbers and think about their place value.

0 1 2 3 4 5 6 7 8 9

If the number is less than 5, we round down.
If the number is greater than or equal to 5, we round up.

b) The exact number of tickets sold for an Ironcross concert in Rangoon was 9782. How many tickets were sold to the nearest hundred?

c) Yesterday the Yangon Times newspaper sold 56,792 copies. How many copies were sold to the nearest thousand?

d) The population of Myanmar is 47,382,683. To the nearest million how many people live in Myanmar?
We can also use rounding to check our calculations.

**Example** - Use rounding to check that the answer to the sum is correct.

\[
\begin{array}{c}
2389 \\
+ 1467 \\
\hline
3856
\end{array}
\]

2389 to the nearest hundred is 2400, 1467 to the nearest hundred is 1500. \( 2400 + 1500 = 3900 \).

This estimate is close to our answer, so it is probably correct.

If the answer and the estimate are very different, then we know something is wrong!

### 1.4 Addition and Subtraction

One important property of addition is that we can add numbers in any order and the answer will be the same. \( 5 + 3 + 8 = 8 + 5 + 3 \). This property is called the **commutative law** of addition.

The commutative law is not true for **subtraction**. \( 5 - 3 - 8 \neq 8 - 5 - 3 \).

**Addition is commutative. Subtraction is not commutative.**

#### Practice

i. Solve the crossword using the clues. Use rounding to check your answers.

**Across**

1. Add: 165 + 256
2. Add: 943 + 468
3. Add: 1159 + 4457
4. Add: 439 + 320

**Down**

1. Subtract: 5270 - 655
2. Subtract: 2563 - 417
3. Subtract: 2748 - 1584
4. Subtract: 2252 - 553

ii. Min Too has to go from Yangon to Taunggyi and then to Mandalay. How far is his journey? He goes back to Yangon directly. How much shorter is his journey home?

![Diagram of distances between cities](image)

iii. Ben Nevis is the highest mountain in Britain. It is 1343 m high. Mount Everest is the highest mountain in the world. It is 8843 m high. How much higher is Mount Everest than Ben Nevis?
1.5 Multiplication and Division

Think
Solve each calculation. Now write the numbers in a different order and solve again.
What do you notice?

a) $2 \times 4 \times 6 =

c) 6 \times 9 \times 8 =

b) $10 \div 2 \div 5 =

d) $32 \div 4 \div 2 =$

The exercise shows us that Multiplication is commutative. The order you calculate is not important.

Division is not commutative. The order we calculate is important.

The commutative law can make calculations easier:

Example - Calculate $10 \times 3 \times 22$.

$10 \times 3 \times 22 = 22 \times 3 \times 10 = 66 \times 10 = 660$

Think

When we multiply by 10 we add a zero to the number.
What about when we multiply by 100? 1000?

Here are two more methods to make multiplication easier:

Example - Splitting method.
Calculate $17 \times 6$. We know $6 = 2 \times 3$.

$17 \times 6 = 17 \times 2 \times 3 = 34 \times 3 = 112$

Example - Rounding method. Calculate $49 \times 6$.
First, we round 49 to 50.

$49 \times 6 = 50 \times 6 - 1 \times 6 = 300 - 6 = 294$

iv. The table shows the number of people who live in different villages in Oompaland.

Answer the questions to complete the table. Before you fill in the gaps use rounding to check your answer.

a) What is the total population of Southend village?

b) What about the population of Bognor?

c) What is the total number of females in the villages in District 2?

d) Use your answer for c) to calculate the total number of females in all the villages. How else could you calculate this figure?
Practice

i. Choose a method for each question and calculate:
   a) $47 \times 7$
   b) $10 \times 5 \times 11$
   c) $13 \times 9$
   d) $21 \times 8$
   e) $10 \times 35 \times 2$
   f) $67 \times 8$
   g) $8 \times 21$

ii. Solve the following:
   a) A school day is 7 hours. How many minutes is this?
   b) A gallon of petrol costs 280 kyat. How much do 12 gallons cost?
   c) Mama noodles cost 60 kyat a packet. How much do 52 packets cost?

For larger numbers we use long multiplication.

Example - Find $84 \times 26$

\[
\begin{array}{c}
84 \times 26 = 84 \times 6 + 84 \times 20. \\
84 \\
\times 26 \\
\hline
504 \\
+ 1680 \\
\hline
2184 \\
\end{array}
\]

We can use similar methods for division as we do for multiplication.

Think

Which multiplication method can be used to calculate $816 \div 6$? What is the answer?

Practice

Use Long division to calculate:
   a) $56 \div 4$
   b) $90 \div 15$
   c) $112 \div 16$
   d) $720 \div 24$

Example - Use long division to calculate $21 \div 2678$.

\[
\begin{array}{c}
21 \mid 2678 \\
\hline
21 \\
57 \\
42 \\
158 \\
147 \\
11 \\
\hline
21 \div 2678 = 127 \text{ r } 11
\end{array}
\]

Practice

Use Long division to calculate:
   a) $48 \div 576$
   b) $35 \div 8050$
   c) $18 \div 4824$
   d) $38 \div 9728$
   e) $33 \div 8392$
   f) $27 \div 6732$

Activity

Multiply the number 123456789 by 3, then multiply the result by 9.
Now multiply 123456789 by 5 and then again by 9. What do you notice?
What will the answer be if you multiply by 4 then 9? What about multiplying by 7 and then 9?

1.6 Order of Operations

In maths an operation is something we do to a number. Multiplication, division, addition and subtraction are all operations. If we have a calculation with more than one operation, the order we operate is important.

Think

a) Look at these calculations.
   What order should we do the operations?
   6 $+ 4 \times 7 -13$
   $37 - 35 \div 5$
   $8 \times 4 + 15 \div 3$

b) Complete the sentence:
   If we have more than one operation, we do the _________ and _________ first. Then we do the _________ and _________.
Complete the calculations:

\[ \begin{align*}
  a) & \quad 5 \times 4 + 2 \times 3 \\
  b) & \quad 16 + 3 \times 4 - 2 \\
  c) & \quad 9 - 8 + 5 \times 2 \\
  d) & \quad 8 + 4 \times 0 \\
  e) & \quad 5 \times 4 \div 10 + 6 \\
  f) & \quad 19 + 3 \times 2 - 8 \div 2 \\
  g) & \quad 4 \times 2 - 6 \div 3 + 3 \times 2 \times 4
\end{align*} \]

If a calculation contains **brackets** then what is inside the brackets must be calculated **first**.

**Example** - Calculate \( 2 \times (3 + 5) \)

\[ 2 \times (3 + 5) = 2 \times 8 = 16 \]

3\(^2\) is read as **three squared** or to the power of **2**.

\( 3^2 = 3 \times 3 = 9 \).

3\(^3\) is read as **3 cubed** or **3 to the power of 3**.

\( 3^3 = 3 \times 3 \times 3 = 27 \).

If a calculation contains **powers** then we calculate them **after** the brackets.

**Example** - Calculate \((3 + 5)^2 - 8 \times 4\)

\[ (3 + 5)^2 - 8 \times 4 = 8^2 - 8 \times 4 = 64 - 32 = 32 \]

**Example** - Calculate \( \frac{8}{5 - 3} \)

\[ \frac{8}{5 - 3} = 4 + \frac{8}{2} = 4 + 4 = 8 \]

\( \frac{8}{5 - 3} \) means \( 8 \div (5 - 3) = 8 \div 2 = 4 \)

Use this diagram to help you remember the **order of operations**:

\[
\text{brackets} \quad \rightarrow \quad \text{powers} \quad \rightarrow \quad \text{division and multiplication} \quad \rightarrow \quad \text{addition and subtraction}
\]

**Think**

Make different answers by putting brackets into the calculation \( 3 \times 5 - 2 \times 7 + 1 \).

For example: \((3 \times 5) - (2 \times 7) + 1 = 2\).

Write some more examples and give them to your partner. Put brackets into your partner’s examples to make different answers.
Activity - For this you need ten cards numbered 0 - 9.

Turn the cards over. Take two cards to make a 2-digit number. Take four more cards.

With the four cards, try to make an expression using brackets, operations and powers that is equal to your 2-digit number.

You get points for the difference between your answer and the 2-digit number. Try to get a low score.

Example. My two digit number is 47. My four numbers are 1, 3, 8, 5.

(8 × 5) + 1 + 3 = 44 scores 3 points because 47 - 44 = 3.

(1 + 8) × 5 + 3 = 48 scores 1 point because 48 - 47 = 1.

Try once. Shuffle the cards and take some new numbers.

Play 10 times. The person with the lowest score wins.

2. Factors and Multiples

2.1 Introduction

When 12 is divided by 3, the remainder is zero. We say that 3 is a factor of 12.

Think

What are the other factors of 12? What are the factors of 18?

We can write a number as the product of two factors: 1 × 12, 3 × 4, 2 × 6 are all equal to 12.

Practice

Write each number as a product of two factors:

a) 18
b) 24
c) 27
d) 36
e) 64
f) 80
g) 96
h) 144

12 divided by 2 is equal to a whole number. We say that 12 is a multiple of 2.

12 is also a multiple of 1, 3, 4, 6 and 12.

2.2 Prime Numbers

Some numbers only have two factors. The factors of 3 are 1 and 3. The factors of 5 are 1 and 5. 3 and 5 are called prime numbers. 1 is not a prime number because it only has one factor.

Think

Is this statement true or false?

Explain your answer:

‘The only even prime number is 2’

Practice

Answer the following:

a) Which numbers are prime numbers?: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

b) Write down all the prime numbers between 21 and 30.

c) Write down all the prime numbers between 30 and 50.

Activity - Look at the numbers below. 1 is crossed out. 2 is circled.

Write the numbers 1-100 in your book. Cross out all the multiples of 2. Circle 3 and cross out all the multiples of 3. Circle 5 and cross out all the multiples of 5. Circle 7 and cross out all the multiples of 7. Continue until all numbers are circled or crossed out.

Write out all the numbers that are not circled or crossed out. What are these numbers?

1 2 3 4 5
2.3 Indices
We learnt in Section 1.5 that $3^3$ is read as ‘3 cubed’ or ‘3 to the power of 3’. $3^3 = 3 \times 3 \times 3 = 27$.
The power is called the index. (The plural of index is indices). $3^3$ is $3 \times 3 \times 3$ written in index form.

Practice

i. Write the numbers in index form:
   a) $3 \times 3$
   b) $2 \times 2 \times 2$
   c) $5 \times 5 \times 5 \times 5$
   d) $7 \times 7 \times 7 \times 7 \times 7$
   e) $13 \times 13 \times 13 \times 13$
   f) $2 \times 2 \times 3 \times 3$
   g) $3 \times 3 \times 3 \times 5 \times 5$
   h) $3 \times 11 \times 11 \times 2 \times 2$
   i) $13 \times 5 \times 13 \times 5 \times 13$

ii. Find the value of:
   a) $3^3$
   b) $2^5$
   c) $5^2$
   d) $3^4$
   e) $7^2$
   f) $2^3 \times 3$
   g) $2^3 \times 3^2$
   h) $3^2 \times 5^2$
   i) $2 \times 3^3 \times 7$

Remember that multiplication is commutative!

2.4 Prime Factors
A prime factor is a prime number that is a factor of another number. 3 is a prime number and a factor of 9 so it is a prime factor of 9.

These rules can help us find prime factors:
- A number is divisible by 2 if the last digit is even.
- 3 if the sum of the digits is divisible by 3.
- 5 if the last digit is 0 or 5.

Practice

Are these numbers divisible by 2, 3 or 5?

a) 525    b) 747    c) 740    d) 1424

Any whole number that is greater than 1 can be written as a product of prime factors.

Example - Write 720 as a product of prime factors.

Method 1: Start by dividing by 2.

<table>
<thead>
<tr>
<th>2</th>
<th>720</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>360</td>
</tr>
<tr>
<td>2</td>
<td>180</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

We have $720 = 2 \times 2 \times 2 \times 3 \times 3 \times 5 = 2^3 \times 3^2 \times 5$

Method 2: Use a factor tree.

```
    720
   /   |
  12   60
 /     / |
2   6   5
 /   /   / |
2   3   2  6
      /     |
    2     3
```

The underlined numbers are the prime factors.

We have $720 = 2 \times 2 \times 3 \times 5 \times 2 \times 2 \times 3 = 2^4 \times 3^2 \times 5$
Think

To use the factor tree we divided 720 into 2 non-prime factors, 12 and 60.
Find 2 different non-prime factors of 720. Use them in a factor tree to find the prime factors of 720.

2.5 Highest Common Factor (H.C.F.)

The Highest Common Factor (H.C.F) of two or more numbers is the biggest number that is a factor of both numbers.

Example - Find the H.C.F of 16 and 24.
The factors of 16 are 1, 2, 4, 8 and 16.
The factors of 24 are 1, 2, 4, 6, 8, 12 and 24.
1, 2, 4 and 8 are factors of 16 and 24. 8 is the biggest factor. 8 is the Highest Common Factor.

Practice

Find the Highest Common Factor of:
- a) 9, 12
- b) 12, 24
- c) 14, 42
- d) 30, 45, 90
- e) 39, 13, 26
- f) 36, 44, 52

2.6 Lowest Common Multiple (L.C.M.)

The Lowest Common Multiple (L.C.M.) of two numbers is the smallest number that is a multiple of both numbers.

Example - Find the L.C.M. of 6 and 8.
The multiples of 6 are: 6 12 18 24 30 36 42 48 54 60 66 72.....
The multiples of 8 are: 8 16 24 32 40 48 56 64 72 80 88 96.....
We can see that common multiples of 6 and 8 are: 24, 48 and 72. 24 is the smallest multiple.
24 is the Lowest Common Multiple.

Practice

Find the Lowest Common Multiple of:
- a) 3, 5
- b) 6, 8
- c) 5, 15
- d) 12, 16
- e) 4, 5, 6
- f) 18, 24, 36

Activity - For this you need twenty folded pieces of paper numbered 1-20.

Your teacher will divide the class into groups of 4 and then into two teams of two people.
The first team picks two numbers. The second pair has to find the lowest common multiple of the two numbers. If they are right, they get one point. Fold the numbers and put them back.
Now the second pair picks two numbers and the first pair has to find the lowest common multiple. The first team to score 10 points is the winner.
3. Negative Numbers

3.1 Introduction
Look at the number line. Numbers to the right of zero are positive numbers. They are greater than zero. The numbers to the left of zero are negative numbers. They are less than zero.

The positive number 5 means +5, but we don’t write the ‘+’ sign. When we write negative numbers, we put a ‘−’ sign in front of the number.

Think
We know that 5 > 3 (5 is greater than 3) and that 2 < 4 (2 is less than 4). What about negative numbers? Put the correct sign between the numbers below.

a) -2   -4  b) -3   -1  c) -4   1  d) -4   -2   0  e) 5   1   -3  f) -3   -9   -12

We see that as a negative number increases, its value decreases.

3.2 Temperatures
Temperature is measured in degrees Celsius or degrees centigrade. Eight degrees Celsius is written as 8°C. In Science you learn that water freezes at 0°C. The temperature where you live is always greater than 0°C. In England, America and many other countries the temperature is sometimes less than 0°C. Temperatures less than 0°C are written as negative numbers, such as -5°C. Temperatures are measured using thermometers.

Practice
Write the temperature given by each thermometer. The first one is done for you.

Now look at the map of Britain and answer the questions.

a) Which city has the warmest temperature?
b) How many degrees below freezing is Glasgow?
c) How many degrees above freezing is Swansea?
d) Is Aberdeen colder than Glasgow?
e) Which city has the coldest temperature?
### 3.3 Addition and Subtraction

We use these rules when we add and subtract with negative numbers:

<table>
<thead>
<tr>
<th>Equation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+2) = (+2) = 2</td>
<td>- (+2) = -2</td>
</tr>
<tr>
<td>+ (−2) = -2</td>
<td>+ (−2) = -2</td>
</tr>
</tbody>
</table>

#### Example - Find 5 + (−7)

5 + (−7) = 5 − 7 = −2

#### Example - Find 3 + (−2) + (−8) + 1

3 + (−2) + (−8) + 1 = 3 + 2 − 8 + 1 = −2

**Practice**

**i.** Find:

- a) 3 + (−6)
- b) −2 + (−3)
- c) −5 + (−7)
- d) −(−1) + (−5)
- e) −(−3) + (−5) + (−5)

**iii.** The numbers in this triangle are found by adding together the two numbers above. Complete it.

<table>
<thead>
<tr>
<th>5</th>
<th>−4</th>
<th>2</th>
<th>−1</th>
<th>−3</th>
<th>0</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>−2</td>
<td>−11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### 3.4 Multiplication and Division

We already know that 4 x 2 = 8 and that 4 ÷ 2 = 2. For negative numbers we use these rules:

If one number is negative, the answer is negative: If both numbers are negative, the answer is positive:

3 x (−2) = −6 and 3 x (−2) = −6
4 ÷ (−2) = −2 and (−4) ÷ 2 = −2

**Practice**

Find:

- a) 6 x (−4)
- b) 7 x (−2)
- c) 8 x (−2)
- d) (−8) x (−3)
- e) (−12) x (−11)
- f) (−16) x (−7)
- g) (−6) ÷ 2
- h) (−15) ÷ 3
- i) (−28) ÷ 7
- j) (−28) ÷ (−4)
- k) (−72) ÷ (−9)
- l) (−144) ÷ (−12)

**Why does a negative number multiplied by a negative number give a positive answer?**

First, we use some things we already know: 3 + (−3) = 0 and 2 x (0) = 0.
These tell us that: 2 x (0) = 2 x (3 + (−3)) = 0.
We can expand the brackets:
2 x (3 + (−3)) = 2 x 3 + 2 x (−3).
So:
2 x (0) = 2 x 3 + 2 x (−3) = 6 + 2 x (−3) = 0.
For this to be true, 2 x (−3) must be equal to −6 so:
2 x (0) = 6 + (−6) = 6 − 6 = 0.

From this example we learn that a negative multiplied by a positive gives a negative answer.

However, it is also true that −2 x (0) = 0 and that −2 x (0) = −2 x (3 + (−3)) = −2 x 3 + (−2) x (−3) = 0.
We already know that −2 x 3 = −6. So, −2 x (0) = −6 + (−2) x (−3) = 0.
This is only true if (−2) x (−3) is equal to 6 so that −2 x (0) = −6 + 6 = 0.

From this example we learn that a negative multiplied by a negative gives a positive answer.
4. Decimals

4.1 Introduction

The decimal point separates the whole numbers from the parts of the whole.

Think

<table>
<thead>
<tr>
<th>units</th>
<th>tenths</th>
<th>hundredths</th>
<th>thousandths</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

The number in the tenths column is 4. There are 4 tenths. In decimal notation this is 0.4

How many hundredths are there? Thousandths?
Can you write these as decimals?
Do you know how to say this number?

Practice

i. Practice saying these numbers
   a) 0.8725
   b) 24.9182
   c) 72.156874
   d) 0.06146

ii. Write the underlined digits in words.
   a) fifteen, three tenths and four hundredths
   b) eleven and seven hundredths
   c) twenty seven and thirty five thousandths
   d) five tenths and six thousandths

4.2 Addition of Decimals

We add decimals in the same way we add whole numbers.

Example - Find 5.3 + 6.8

\[
\begin{array}{c}
5.3 \\
+ 6.8 \\
\hline
12.1
\end{array}
\]

Practice

i. Solve the following
   a) 7.2 + 3.6
   b) 0.013 + 0.026
   c) 3.87 + 0.11
   d) 0.0043 + 0.263
   e) 4.62 + 0.078
   f) 0.32 + 0.032 + 0.0032
   g) 7.34 + 6 + 14.034

ii. Find the perimeter of the rectangle
    (perimeter is the distance all the way around):

    \[
    \begin{array}{c}
    7.1 \text{ cm} \\
    4.2 \text{ cm} \\
    4.2 \text{ cm} \\
    7.1 \text{ cm}
    \end{array}
    \]

Activity - Copy the grid of numbers into your exercise book

<table>
<thead>
<tr>
<th>4.33</th>
<th>0.59</th>
<th>2.36</th>
<th>5.608</th>
<th>3.182</th>
<th>0.57</th>
<th>0.649</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.25</td>
<td>1.89</td>
<td>5.81</td>
<td>3.218</td>
<td>1.14</td>
<td>2.98</td>
<td>3.902</td>
</tr>
<tr>
<td>3.722</td>
<td>0.9</td>
<td>3.7</td>
<td>5.959</td>
<td>6.27</td>
<td>6.804</td>
<td>0.098</td>
</tr>
<tr>
<td>0.13</td>
<td>5.91</td>
<td>3.241</td>
<td>0.68</td>
<td>1.291</td>
<td>2.99</td>
<td>4.2</td>
</tr>
</tbody>
</table>

Cross out pairs of numbers that add up to between 5 and 7 (for example 4.33+1.89= 6.22).
You have 2 minutes to cross out as many pairs as possible.
Your score is the sum of all the remaining numbers.
The person with the lowest score is the winner.
Try again with your partner to reduce your score. What is the lowest possible score?

4.3 Subtraction of Decimals

We also subtract decimals in the same way we subtract whole numbers.

Example - Find 24.2 - 13.7

\[
\begin{array}{c}
24.2 \\
- 13.7 \\
\hline
10.5
\end{array}
\]

Practice

i. Solve the following:
   a) 9.6 - 1.8
   b) 17.23 - 0.36
   c) 7.063 - 0.124
   d) 3.2 - 0.26
   e) 11 - 8.6
   f) 0.73 - 0.0006
   g) 9.2 + 13.21 - 14.6

ii. The perimeter of the shape is 19 cm. What is the length of the fourth side?
4.4 Changing Units - Length

The **metric units** of length are kilometre (km), metre (m), centimetre (cm) and millimetre (mm).

**Think**
Which unit of length is used to measure the following:

- a) The distance between Yangon and Mandalay?
- b) The length of a football pitch?
- c) The length of a mosquito?
- d) The width of your classroom?
- The distance to the moon is measured in kilometres. Can you guess how far it is?

To compare lengths we write them with the same units. We use the following relationships:

1 km = 1000 m  
1 m = 100 cm

To change from large units to small units we use multiplication.
To change from small units to large units we use division.

**Example** - Write 3.5 m in centimetres.
Use 1 m = 100 cm
3.5 m = 3.5 x 100 cm = 350 cm.

**Example** - Write 580 m in kilometres.
Use 1 km = 1000 m
580 m = 580 ÷ 1000 km = 0.58 km.

**Practice**

I. Write the quantity in the smaller units given in brackets:
   - a) 2 m (cm)
   - b) 3 cm (mm)
   - c) 1.5 m (cm)
   - d) 9.2 m (mm)
   - e) 2 km (mm)

II. Write the quantity in the larger units given in brackets:
   - a) 300 mm (cm)
   - b) 150 cm (m)
   - c) 12 cm (m)
   - d) 1250 mm (m)
   - e) 2850 m (km)

4.5 Changing Units - Mass

The **metric units** of mass are tonne (t), kilogram (kg) and gram (g) and milligram (mg).

We use the following relationships:

1 t = 1000 kg  
1 kg = 1000 g  
1 g = 1000 mg

We use grams and kilograms for things we use everyday. We use tonnes for heavier things.
4.7 Multiplying Decimals by Whole Numbers

We multiply a decimal number and a whole number in the same way as we multiply two whole numbers.

Example - Find $2.68 \times 31$

\[
\begin{array}{c}
2.68 \\
\times 31 \\
\hline
16.48 \\
80.40 \\
\hline
82.048
\end{array}
\]

Think
How do we order the quantities, 45 cm, 0.4 m, 360 mm and 0.002 km? What do we do first?

Practice

Calculate the following:

a) $812.9 \times 4$

b) $0.126 \times 4$

c) $9 \times 1.43$

d) $53.72 \times 6$

e) $812.9 \times 43$

f) $0.126 \times 47$

g) $92 \times 1.43$

d) $53.72 \times 64$

i) Some students have to build a new wall for the classroom using bamboo. They need 23 pieces of bamboo that are 3.67 m long. What is the total length of bamboo needed?
4.8 Dividing Decimals by Whole Numbers

We also divide decimal number and a whole number in the same way as we divide two whole numbers.

**Example - Find 0.45 \div 5**

\[
\begin{array}{c|c}
5 & 0.45 \\
\hline
5 & 0.09 \\
\hline
& (5 \times 9 = 45) \\
\end{array}
\]

5 does not go into 4 so we write a zero in the tenths column.

**Example - Find 4.2 \div 25**

\[
\begin{array}{c|c}
25 & 4.200 \\
\hline
25 & 0.168 \\
170 & \\
150 & \\
200 & \\
200 & \\
\end{array}
\]

Practice

i. Calculate the following:

\[\begin{align*}
a) & \ 0.672 \div 3 \\
b) & \ 26.6 \div 7 \\
c) & \ 0.6552 \div 6 \\
d) & \ 0.0285 \div 5 \\
e) & \ 9.45 \div 21 \\
f) & \ 0.864 \div 24 \\
g) & \ 71.76 \div 23 \\
h) & \ 0.2585 \div 25 \\
\end{align*}\]

ii. A pentagon is a 5-sided shape. The perimeter of the pentagon shown is 16.24 cm. What is the length of one side?

All the sides are equal

4.9 Multiplying Decimals

Think

Earlier we learnt that 0.2 = \(\frac{2}{10}\). How can use this to calculate 0.3 \times 0.2?

Practice

Calculate the following:

\[\begin{align*}
a) & \ 0.04 \times 0.2 \\
b) & \ 0.003 \times 0.1 \\
c) & \ 0.3 \times 0.002 \\
d) & \ 0.7 \times 0.001 \\
e) & \ 0.07 \times 0.008 \\
f) & \ 8 \times 0.6 \\
g) & \ 0.2 \times 0.008 \\
h) & \ 4 \times 0.009 \\
\end{align*}\]

Compare the number of the decimal places in the answer with the those in the numbers being multiplied. What do you notice?

**Example - Find 0.08 \times 0.4**

\[
\begin{array}{c|c}
8 & 0.032 \\
& (2 \text{ places}) (1 \text{ place}) (3 \text{ places}) \\
\end{array}
\]

**Example - Find 0.252 \times 0.4**

\[
\begin{array}{c|c}
252 & 0.1008 \\
& (3 \text{ places}) (1 \text{ place}) (4 \text{ places}) \\
\end{array}
\]

Practice

Calculate the following:

\[\begin{align*}
a) & \ 0.751 \times 0.2 \\
b) & \ 5.6 \times 0.02 \\
c) & \ 0.16 \times 0.005 \\
d) & \ 0.5 \times 0.005 \\
e) & \ 310 \times 0.04 \\
f) & \ 0.68 \times 0.543 \\
g) & \ 1.36 \times 0.082 \\
h) & \ 0.0072 \times 0.034 \\
\end{align*}\]
4.10 Division by Decimals

Example - Calculate $0.012 \div 0.06$

$0.012 \div 0.06$ can be written as $\frac{0.012}{0.06}$

\[
\frac{0.012}{0.06} = \frac{0.012 \times 100}{0.06 \times 100} = \frac{1.2}{6} = 0.2
\]

Multiplying top and bottom by the same number does not change the value.

It is easier to divide by a whole number.

This is the answer!

Practice

Calculate the following:

a) $0.48 \div 0.04$

b) $3.6 \div 0.06$

c) $0.84 \div 0.07$

d) $0.168 \div 0.014$

e) $20.8 \div 0.0004$

f) $0.00132 \div 0.11$

g) $4.96 \div 1.6$

h) $0.0204 \div 0.017$

4.11 Decimal Places

We already know how to round whole numbers. We round to a given number of decimal places (d.p.) in a similar way.

Think

Look at the number on the right. How do we round it to 1 d.p.?

What about 2 d.p.?

Practice

i. Round the following to the nearest whole number:

   a) 13.9

   b) 109.7

   c) 152.4

   d) 0.98

ii. Round the following to the number of decimal places given in brackets:

   a) 1.2671 (2 d.p.)

   b) 0.0416 (3 d.p.)

   c) 3.9949 (2 d.p.)

   d) 8.0293 (2 d.p.)

iii. Look at the division questions i. in Section 4.8. Round your answers to 2 d.p.

5. Fractions

5.1 Introduction

Think

How many parts is the square divided into?

How many parts are shaded?

Do you know how to write this as a fraction?

Numerator

Denominator

The bottom number in a fraction is the total number of parts. It is called the denominator.

The top number is the number of parts we are counting. It is called the numerator.

The fraction above is called a proper fraction because the numerator is less than the denominator.
Practice

i. There are 60 minutes in one hour. What fraction of an hour is:
   a) 1 minute?  
   b) 7 minutes?  
   c) 35 minutes?  
   d) 55 minutes?

ii. You go to school 5 days every week. What fraction of the week are you at school?

iii. To travel from Mandalay to Mawlamyine I take a train to Rangoon which costs $35, then I take a bus to Moulmein for $9. What fraction of the total cost is the bus to Mawlamyine?

iv. Which subject do you like most, Maths, English or Social Studies? Complete the table after the class has voted.

<table>
<thead>
<tr>
<th>Maths</th>
<th>English</th>
<th>Social Studies</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What fraction of the class like Maths the most? What about English and Social Studies?

v. Myint San prepared an area for a vegetable garden. Using rope she divided the area into 15 equal squares. What fraction of the whole garden is given by one square? She planted corn in 3 squares and green beans in 2 squares. Shade these squares on the diagram. What fraction of the whole garden has been planted?

5.2 Improper Fractions and Mixed Numbers

If the numerator is greater than the denominator then the fraction is an improper fraction. In the diagram one square is made of 4 parts. There are 11 shaded parts in total, so we write: $\frac{11}{4}$.

An improper fraction can also be written as a mixed number - part whole number and part fraction. In the diagram there are 2 whole squares and $\frac{3}{4}$ of another square shaded, so we write: $2\frac{3}{4}$.

Think

What do we learn about $\frac{11}{4}$ and $2\frac{3}{4}$ from this example?

Activity - Write some examples of proper fractions, improper fractions and mixed numbers below. Show them to your partner and ask him/her to classify them.

We can write mixed numbers as improper fractions and improper fractions as mixed numbers.

Example - Write $\frac{5}{8}$ as an improper fraction.

$\frac{5}{8}$

Example - Write $\frac{32}{5}$ as a mixed number.

$\frac{32}{5}$

Divide 32 by 5: $5\overline{6}$ remainder 2.

In words, this is 6 wholes and 2 parts. So, $\frac{32}{5} = 6\frac{2}{5}$.
5.3 Equivalent Fractions

Think

The fractions above are equivalent. They have the same value.
Equivalent sets of fractions can be found using a multiplication wall.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>24</td>
<td>27</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
<td>24</td>
<td>28</td>
<td>32</td>
<td>36</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>36</td>
<td>42</td>
<td>48</td>
<td>54</td>
<td>60</td>
</tr>
</tbody>
</table>

Think

Look at the 2nd and 5th rows of the multiplication wall. Complete the set of equivalent fractions:

\[
\frac{2}{5} = \frac{4}{10}
\]

Practise

Shade the shapes to show that the fractions are equivalent

\[a) \quad \frac{1}{3} = \frac{2}{6}\]

\[b) \quad \frac{2}{4} = \frac{4}{8}\]

\[c) \quad \frac{2}{3} = \frac{8}{12}\]

Use the multiplication wall to make sets of equivalent fractions for \(a), \ b) \) and \( c)\).

Activity - For this you need nine pieces of paper numbered 1-9. Investigate different ways of placing the numbers on the diagram to make equivalent fractions. Start by keeping one of the denominators the same and changing the other 3 numbers to make equivalent fractions.
5.4 Simplifying Fractions

We can simplify a fraction by finding common factors of the numerator and the denominator.

Example - Write \( \frac{32}{56} \) in its simplest form.

\( 32 = 4 \times 8 \) and \( 56 = 7 \times 8 \). 8 is a common factor.

\[ \frac{32}{56} = \frac{4 \times 8}{7 \times 8} = \frac{4}{7} \]

Cancelling the 8s gives the answer.

\( \frac{4}{7} \) is \( \frac{32}{56} \) written in its lowest terms.

Practice

i. Simplify the fractions:

\[ a) \frac{6}{10} \quad b) \frac{12}{18} \quad c) \frac{42}{66} \quad d) \frac{132}{144} \quad e) \frac{54}{162} \quad f) \frac{49}{77} \]

ii. Write the answer in its lowest terms:

\[ a) \] What fraction of a kilogram is 24 grams?

\[ b) \] How many days are there in 60 hours?

5.5 Ordering Fractions

We can use a fraction wall to compare fractions with different denominators.

<table>
<thead>
<tr>
<th>( \frac{1}{8} )</th>
<th>( \frac{1}{7} )</th>
<th>( \frac{1}{6} )</th>
<th>( \frac{1}{5} )</th>
<th>( \frac{1}{4} )</th>
<th>( \frac{1}{3} )</th>
<th>( \frac{1}{2} )</th>
</tr>
</thead>
</table>

Think

Look at the wall. Which fraction is bigger, \( \frac{1}{2} \) or \( \frac{1}{3} \)? How about \( \frac{1}{4} \) and \( \frac{1}{7} \)?

Is this statement true: \( \frac{3}{4} \geq \frac{2}{3} \). How can you use the wall to find out?

We can order sets of fractions by writing them all with a common denominator. A set of fractions has a common denominator if their denominators are all the same.
5.6 Changing Fractions to Decimals

We can write fractions as decimals by finding an equivalent fraction with a denominator of 10, 100, 1000....

**Example** - Order \( \frac{1}{2}, \frac{7}{3}, \frac{3}{5} \)

Find a common denominator for the fractions:

\[
\frac{1}{2} = \frac{1 \times 10}{2 \times 10} = \frac{10}{20}, \quad \frac{7}{3} = \frac{7 \times 2}{10 \times 2} = \frac{14}{20}, \quad \frac{3}{5} = \frac{3 \times 4}{5 \times 4} = \frac{12}{20}
\]

By comparing the numerators we see that the order is:

\[
\frac{10}{20}, \quad \frac{12}{20}, \quad \frac{14}{20}, \quad \frac{15}{20}, \quad \frac{1}{2}, \quad \frac{3}{5}, \quad \frac{7}{10}, \quad \frac{3}{4}, \quad \frac{3}{5}, \quad \frac{7}{4}, \quad \frac{10}{4}
\]

20 is a common denominator for these fractions.

**Practice**

i. Use the fraction wall to write the correct symbol > or < between the two fractions:

\[
\begin{align*}
a) \quad \frac{1}{4} & \quad \frac{1}{7} \\
b) \quad \frac{1}{2} & \quad \frac{7}{10} \\
c) \quad \frac{5}{6} & \quad \frac{3}{8} \\
d) \quad \frac{3}{7} & \quad \frac{32}{56}
\end{align*}
\]

ii. Find which fraction is bigger by writing them with common denominators:

\[
\begin{align*}
a) \quad \frac{3}{4} & \quad \frac{5}{6} \\
b) \quad \frac{9}{11} & \quad \frac{7}{9} \\
c) \quad \frac{5}{6} & \quad \frac{3}{8} \\
d) \quad \frac{5}{7} & \quad \frac{7}{9}
\end{align*}
\]

iii. Order each set of fractions. Start with the smallest:

\[
\begin{align*}
a) \quad \frac{17}{28}, \frac{3}{14}, \frac{11}{7} \\
b) \quad \frac{7}{12}, \frac{2}{3}, \frac{17}{24}, \frac{3}{4} \\
c) \quad \frac{13}{20}, \frac{3}{10}, \frac{4}{8}
\end{align*}
\]

5.6 Changing Fractions to Decimals

We can write fractions as decimals by finding an equivalent fraction with a denominator of 10, 100, 1000....

**Example** - Write \( \frac{2}{5} \) as a decimal.

\[
\frac{2}{5} = \frac{4}{10} = \text{four tenths} = 0.4.
\]

**Example** - Write \( \frac{3}{8} \) as a decimal.

\[
\frac{3}{8} \text{ means } 3 + 8 \text{ and } \overline{3.000}.
\]

So, \( \frac{3}{8} = 0.375. \)

**Think**

We can also write decimals as fractions. Can you write 0.2, 0.75 and 0.05 as fractions?

**Practice**

i. Write each fraction as a decimal:

\[
\begin{align*}
a) \quad \frac{2}{5} & \quad \frac{1}{4} \\
b) \quad \frac{3}{25} & \quad \frac{5}{16} \\
c) \quad \frac{1}{8} & \quad \frac{7}{8}
\end{align*}
\]

ii. Write each pair of fractions as decimals and put the correct symbol > or < between them:

\[
\begin{align*}
a) \quad \frac{2}{5} & \quad \frac{1}{2} \\
b) \quad \frac{8}{10} & \quad \frac{3}{4} \\
c) \quad \frac{8}{10} & \quad \frac{22}{25} \\
d) \quad \frac{3}{20} & \quad \frac{2}{25}
\end{align*}
\]

iii. Write each decimal as a fraction. Write the fraction in its lowest terms:

\[
\begin{align*}
a) \quad 0.3 & \quad \frac{3}{10} \\
b) \quad 0.42 & \quad \frac{21}{50} \\
c) \quad 2.78 & \quad \frac{3}{10} \\
d) \quad 7.12 & \quad \frac{35}{5} \\
e) \quad 0.325 & \quad \frac{4}{12}
\end{align*}
\]

iv. Order each set by writing them as decimals:

\[
\begin{align*}
a) \quad \frac{1}{2}, \frac{0.26}, \frac{1}{4}, \frac{0.3}, \frac{31}{100} & \quad \frac{0.91}{5}, \frac{19}{20}, 0.85, \frac{3}{4}, 1.35, \frac{7}{10}, \frac{14}{10}, \frac{16}{20}
\end{align*}
\]
5.7 Fractions as Recurring Decimals

Think
In the above example we used division to show that \( \frac{3}{8} = 0.375 \). Use the same method to change \( \frac{2}{3} \) and \( \frac{2}{7} \) into decimals. Write your answers below to 12 decimal places. What do you notice?

A number or group of numbers that repeats like this is called a **recurring decimal**.

We use a dot above the figures that recur:

\[
\frac{2}{3} = 0.66666666 \quad \text{and} \quad \frac{2}{7} = 0.285714285714 = 0.\overline{285714}
\]

**Practice**
Write the fractions as recurring decimals. Use dots to show how each decimal recurs

\( a) \frac{4}{9} \quad b) \frac{2}{11} \quad c) \frac{7}{9} \quad d) \frac{8}{7} \)

5.8 Adding and Subtracting Fractions

Think
This week Myint San planted Betel nut in four squares of her garden. Shade this area on the diagram. What fraction of her garden is now planted? Express this in its simplest form.

Fractions with the same denominator are added or subtracted by adding or subtracting the numerators. If fractions have different denominators, then we write them as equivalent fractions.

**Example** -
\[
\frac{5}{15} + \frac{4}{15} = \frac{9}{15} = \frac{3}{5}
\]
\[
\frac{8}{15} - \frac{3}{15} = \frac{5}{15} = \frac{1}{3}
\]

**Example** -
\[
\frac{2}{3} - \frac{1}{5} = \frac{10}{15} - \frac{3}{15} = \frac{7}{15}
\]

**To add or subtract mixed numbers we follow these steps:**
1. Change to improper fractions
2. Change to equivalent fractions with a common denominator.
3. Add or subtract.
4. Write the answer in its simplest form.

**Practice**

i. Solve and write the answer in its lowest terms

\( a) \frac{3}{5} + \frac{1}{5} \quad b) \frac{5}{8} + \frac{2}{8} \quad c) \frac{5}{16} + \frac{7}{16} \quad d) \frac{33}{99} + \frac{11}{99} + \frac{22}{99} + \frac{33}{99} \)
ii. The following fractions have different denominators. Solve and write the answer in its lowest terms
a) \( \frac{2}{5} + \frac{1}{6} \)  
\( \frac{3}{7} + \frac{1}{6} \)  
\( \frac{3}{10} + \frac{2}{3} \)  
\( \frac{3}{11} + \frac{5}{9} \)  
\( \frac{3}{8} + \frac{7}{16} \)  
\( \frac{3}{12} + \frac{1}{6} \)

\[ b) \frac{5}{12} + \frac{1}{6} + \frac{1}{3} \]
\[ c) \frac{3}{10} + \frac{1}{5} + \frac{1}{4} \]

iii. Subtract and write the answer in its lowest terms
a) \( \frac{8}{9} - \frac{2}{9} \)  
\( \frac{3}{4} - \frac{1}{4} \)  
\( \frac{2}{3} - \frac{3}{7} \)  
\( \frac{8}{11} - \frac{2}{5} \)  
\( \frac{8}{13} - \frac{1}{2} \)  
\( \frac{66}{99} - \frac{22}{99} - \frac{33}{99} - \frac{11}{99} \)

iv. Solve and write the answer in its lowest terms
a) \( \frac{7}{12} - \frac{1}{6} - \frac{1}{3} \)  
\( \frac{5}{8} - \frac{21}{40} + \frac{2}{5} \)  
\( \frac{3}{8} + \frac{7}{16} - \frac{3}{4} \)  
\( \frac{13}{16} - \frac{1}{8} + \frac{3}{4} \)

v. Follow the steps above to add or subtract the mixed numbers
a) \( 1 \frac{1}{8} + \frac{3}{8} \)  
\( 2 \frac{7}{10} - \frac{3}{10} \)  
\( \frac{3}{4} + 2 \frac{3}{4} \)  
\( 3 \frac{1}{5} - 2 \frac{2}{5} \)  
\( 2 \frac{1}{4} + 3 \frac{1}{2} \)  
\( 5 \frac{5}{9} - 4 \frac{1}{3} \)  
\( 8 \frac{4}{7} - 2 \frac{1}{3} \)

vi. Solve these problems.

\( a) \) Tin Tin adds two fractions. How many mistakes did he make? Explain the mistakes.
\( \frac{1}{4} + \frac{2}{5} = \frac{5}{20} + \frac{4}{20} = \frac{9}{40} \)

\( b) \) Every day Saw Saw spends \( \frac{1}{3} \) of his time sleeping, \( \frac{1}{4} \) of his time at school and \( \frac{1}{12} \) of his time eating. What fraction of the day is remaining?

\( c) \) Myint San’s garden is \( 6 \frac{1}{4} \) m wide and \( 5 \frac{3}{4} \) m long. What is the perimeter of her garden?

\( d) \) At the end of the rainy season she harvested her crops. She had \( 5 \frac{1}{2} \) kg of corn, \( 2 \frac{1}{4} \) kg of green beans and 7 kg of cucumber. What was the total weight of her harvest? Write the answer as a fraction and as a decimal.

**Activity - Egyptian Fractions**

A unit fraction is a fraction with a denominator of \( 1 \), \( \frac{1}{3}, \frac{1}{5} \) and \( \frac{1}{7} \) are unit fractions.

The Egyptians only used unit fractions. The Egyptians wrote \( \frac{7}{20} \) by adding unit fractions:
\[ \frac{7}{20} = \frac{4}{20} + \frac{2}{20} + \frac{1}{20} = \frac{1}{5} + \frac{1}{10} + \frac{1}{20} \]

Work with a partner to write \( \frac{13}{20} \) as the sum of unit fractions. Write some more proper fractions as the sums of unit fractions. Can you calculate \( \frac{17}{20} + \frac{13}{40} \) using the Egyptian method?

### 5.9 Multiplying Fractions

We multiply fractions by multiplying the numerators and denominators:
\[ \frac{1}{2} \times \frac{1}{4} = \frac{1 \times 1}{2 \times 4} = \frac{1}{8} \]

Look at the diagram. The shaded region is \( \frac{1}{2} \) of \( \frac{1}{4} \) the shape.

It is also \( \frac{1}{8} \) of the total shape. We see that \( \frac{1}{2} \) of \( \frac{1}{4} = \frac{1}{8} \).

We have \( \frac{1}{2} \times \frac{1}{4} = \frac{1}{8} \) and \( \frac{1}{2} \) of \( \frac{1}{4} = \frac{1}{8} \). We learn that ‘of’ means ‘multiplied by’.
This helps us find fractions of whole numbers and quantities.

Example - Find three fifths of 95 metres.

\[
\frac{3}{5} \text{ of } 95 = \frac{3}{5} \times 95 = \frac{3 \times 95}{5 \times 1} = \frac{3 \times 19}{1} = 3 \times 19 = 57.
\]

So, three fifths of 95 metres is 57 metres.

Notice that we can write 95 as a fraction with a denominator of 1 to make the calculation easier:

\[
95 = \frac{95}{1} = 95 \div 1 = 95
\]

We can cancel the 5’s.

Practice

i. Draw diagrams to show that

\[
\begin{align*}
\text{a)} & \quad \frac{1}{2} \text{ of } \frac{3}{6} = \frac{1}{6} \\
\text{b)} & \quad \frac{1}{3} \text{ of } \frac{1}{2} = \frac{1}{6} \\
\text{c)} & \quad \frac{2}{3} \text{ of } \frac{1}{3} = \frac{2}{9} \\
\text{d)} & \quad \frac{1}{4} \text{ of } \frac{1}{3} = \frac{1}{12}
\end{align*}
\]

ii. Find

\[
\begin{align*}
\text{a)} & \quad \frac{1}{3} \text{ of } 18 \\
\text{b)} & \quad \frac{1}{5} \text{ of } 30 \\
\text{c)} & \quad \frac{3}{8} \text{ of } 64 \\
\text{d)} & \quad \frac{3}{5} \text{ of } 20 \text{ metres}
\end{align*}
\]

\[
\begin{align*}
\text{e)} & \quad \frac{1}{4} \text{ of } 200 \text{ baht} \\
\text{f)} & \quad \frac{1}{7} \text{ of } 1 \text{ week} \\
\text{g)} & \quad \frac{3}{7} \text{ of } 35 \text{ km} \\
\text{h)} & \quad \frac{7}{8} \text{ of } 1 \text{ day (24 hours)}
\end{align*}
\]

When we multiply two fractions we look for common factors of the numerators and denominators.

Example - Find \(\frac{4}{25} \times \frac{15}{16}\)

We can cancel 4 with 16 and 5 with 25 to get:

\[
\frac{4}{25} \times \frac{15}{16} = \frac{1}{25} \times \frac{15}{4} = \frac{1 \times 3}{5 \times 4} = \frac{3}{20}
\]

Example - Find \(\frac{3}{5} \times \frac{15}{16} \times \frac{4}{7}\)

We can cancel 5 with 15 and 16 with 4 to get:

\[
\frac{3}{5} \times \frac{15}{16} \times \frac{4}{7} = \frac{3 \times 3 \times 1}{1 \times 4 \times 7} = \frac{9}{28}
\]

Practice

i. Find

\[
\begin{align*}
\text{a)} & \quad \frac{3}{4} \times \frac{1}{2} \\
\text{b)} & \quad \frac{2}{3} \times \frac{5}{7} \\
\text{c)} & \quad \frac{1}{2} \times \frac{7}{8} \\
\text{d)} & \quad \frac{3}{4} \times \frac{1}{5} \\
\text{e)} & \quad \frac{1}{7} \times \frac{3}{5}
\end{align*}
\]

ii. Cancel the common factors to find

\[
\begin{align*}
\text{a)} & \quad \frac{7}{21} \times \frac{4}{21} \\
\text{b)} & \quad \frac{3}{4} \times \frac{16}{21} \\
\text{c)} & \quad \frac{48}{55} \times \frac{5}{12} \\
\text{d)} & \quad \frac{4}{15} \times \frac{25}{64} \\
\text{e)} & \quad \frac{3}{7} \times \frac{28}{33}
\end{align*}
\]

\[
\begin{align*}
\text{f)} & \quad \frac{3}{7} \times \frac{5}{9} \times \frac{14}{15} \\
\text{g)} & \quad \frac{15}{16} \times \frac{8}{9} \times \frac{4}{5} \\
\text{h)} & \quad \frac{3}{10} \times \frac{5}{9} \times \frac{6}{7} \\
\text{i)} & \quad \frac{7}{16} \times \frac{8}{21} \times \frac{9}{11}
\end{align*}
\]

iii. The following questions contain mixed numbers. Solve by changing them to improper fractions and then cancelling common factors

\[
\begin{align*}
\text{a)} & \quad 1\frac{2}{5} \times \frac{2}{5} \\
\text{b)} & \quad 1\frac{1}{4} \times \frac{2}{5} \\
\text{c)} & \quad 3\frac{1}{3} \times \frac{2}{5} \\
\text{d)} & \quad 3\frac{1}{2} \times \frac{4}{3} \\
\text{e)} & \quad 6\frac{2}{5} \times \frac{7}{8} \times \frac{7}{12}
\end{align*}
\]
### 5.10 Dividing by Fractions

Dividing by fractions is quite easy. First we **invert** the fraction and then we multiply.

**Example** - Find \( \frac{5}{3} \div \frac{1}{3} \)

\[
5 \div \frac{1}{3} = 5 \times \frac{3}{1} = 5 \times 3 = 15
\]

**Example** - Find \( \frac{7}{16} \div \frac{5}{8} \)

\[
\frac{7}{16} \div \frac{5}{8} = \frac{7}{16} \times \frac{8}{5} = \frac{7\times 8}{16 \times 5} = \frac{56}{80} = \frac{7}{10}
\]

**Practice**

Find:

- **a)** \( 8 \div \frac{4}{5} \)
- **b)** \( 18 \div \frac{6}{7} \)
- **c)** \( 35 \div \frac{5}{7} \)
- **d)** \( 44 \div \frac{4}{9} \)
- **e)** \( 36 \div \frac{4}{7} \)
- **f)** \( \frac{21}{32} \div \frac{7}{8} \)
- **g)** \( \frac{3}{56} \div \frac{9}{14} \)
- **h)** \( \frac{21}{22} \div \frac{7}{11} \)
- **i)** \( \frac{9}{26} \div \frac{12}{13} \)

**Example** - Find \( \frac{3}{8} \div 8 \frac{3}{4} \)

**Step 1:** Change mixed numbers to improper fractions.

\[
3 \frac{1}{8} \div 8 \frac{3}{4} = \frac{25}{8} \div \frac{35}{4},
\]

**Step 2:** Invert the second fraction.

\[
\frac{25}{8} \div \frac{35}{4} = \frac{25}{8} \times \frac{4}{35},
\]

**Step 3:** Cancel the common factors

\[
\frac{25}{8} \times \frac{4}{35} = \frac{5 \times 5}{2 \times 7},
\]

**Step 4:** Find the answer!

\[
\frac{5}{2} \times \frac{1}{7} = \frac{5}{14}
\]

**Activity** - What steps are needed to find the answer to this problem?  \( \frac{2}{4} \div \frac{3}{14} \div \frac{2}{7} \)

Write the steps needed. Compare what you have written with your partner.

When you have the correct steps solve the problem together.

- **Step 1:**
- **Step 2:**
- **Step 3:**
- **Step 4:**
6. Percentages

6.1 Introduction

Cent is a Latin word for one hundred. Percent means per hundred. If 60 per cent of workers in a factory are women then 60 out of every 100 workers are women. We use the symbol % when writing about percentages, 60 per cent = 60%.

Think

60% of workers in a factory are women. There are 200 workers. How many women are there?

6.2 Percentages, Fractions and Decimals

In the diagram 40 parts out of 100 are shaded. As a fraction this is \( \frac{40}{100} \). As a decimal this is 0.4.

It is also 40%. We see that \( \frac{40}{100} = 0.4 = 40\% \).

Think

i. Write the shaded part of each diagram as a percentage, a fraction and a decimal.

- a)
- b)
- c)
- d)

We can write fractions and decimals as percentages.

**Example** - Write \( \frac{7}{20} \) as a percentage.

\[
\frac{7}{20} = \frac{7}{20} \times 100 \% = 35 \%
\]

**Example** - Write 0.7 and 1.24 as percentages.

0.7 = 0.7 x 100% = 70%
1.24 = 1.24 x 100% = 124%

Think

We can also write percentages as fractions and decimals. Try to write 30% and 62.5% as fractions and as decimals.

**Example** - Write \( 12 \frac{1}{2} \) % as a fraction.

\[
12 \frac{1}{2} \% = 12.5 \% = \frac{12.5}{100} = \frac{12.5 \times 10}{100 \times 10} = \frac{125}{1000} = \frac{1 \times 125}{8 \times 125} = \frac{1}{8} = 0.125
\]

Change to a fraction by dividing by 100.
Multiply the numerator and denominator by 100 to get rid of the decimal point.
Simplify the answer.
6.3 Percentages and Quantities

We can write one quantity as a percentage of another. First we divide the first quantity by the second. Then we multiply the fraction by 100%.

Example - Find 4 as a percentage of 20.
\[
\frac{4}{20} = \frac{4}{20} \times 100\% = 20\%
\]

Example - Write 20 cm as a percentage of 3 m.
3 m = 3 \times 100 \text{ cm} = 300 \text{ cm}. So,
\[
\frac{20}{300} \times 100\% = \frac{20}{3} \times 100\% = 6 \frac{2}{3}\%
\]
6.4 Percentage Increase and Decrease

If we increase a quantity by 30 %, the increased quantity is (100 + 30) % = 130 % of the original.

If we decrease a quantity by 30 %, the decreased quantity is (100 - 30) % = 70 % of the original.

Practice

Write the first quantity as a percentage of the second.

a) 3, 12
b) 15, 20
c) 60 cm, 4 m
d) 600 m, 2 km
e) 1200 g, 2 kg
f) 0.01 m, 150 cm
g) 50 kyat, 100 kyat
h) 135 kyat, 450 kyat

i) In her Maths exam, Thanda scored 28 out of 40. What was her mark as a percentage?
j) Mi Mi earns 800 kyat a day working in a factory. She spends 250 kyat on food, 100 kyat on a drink and saves the remainder. What percentage of her money does she save?

We can also find a percentage of one quantity.

Example - Find 12 % of 450.

12 % = \frac{12}{100} \quad \text{So,}
12 \% \text{ of } 450 = \frac{12}{100} \times 450 = 0.12 \times 450 = 54.

Example - Find \(\frac{7}{3}\)% of 6 m.

\(\frac{7}{3}\)% of 6 m = \(\frac{7}{3}\)% of 600 cm
= \frac{22}{3}\% \text{ of } 600 \text{ cm} = \frac{22}{3 \times 100} \times 600 \text{ cm}
= \frac{22}{300} \times 600 \text{ cm} = 22 \times 2 \text{ cm} = 44 \text{ cm}

Practice

Calculate the following:

a) 40 % of 120
b) 70 % of 360
c) 80 % of 1150 g
d) 63 % of 4 m
e) 17 % of 2000 m
f) 12 % of 400 kyat
g) \(\frac{1}{4}\) % of 56 mm
h) There are 120 shops in Max Shopping centre. 35 % of the shops sell clothes. How many shops sell clothes? How many shops do not sell food?
i) It is estimated that 62 % of the people in Putao are Kachin. If there are 150,000 in total, how many are Kachin?

6.4 Percentage Increase and Decrease

If we increase a quantity by 30 %, the increased quantity is (100 + 30) % = 130 % of the original.
If we decrease a quantity by 30 %, the decreased quantity is (100 - 30) % = 70 % of the original.

Example - Increase 180 by 30 %

The new number is 130 % of the original.
130 % of 180 = \frac{130}{100} \times 180 = \frac{13}{10} \times 180 = 13 \times 18 = 234

The new value is 234.

Example - Decrease 180 by 30 %

The new value is 70 % of the original.
70 % of 180 = \frac{70}{100} \times 180 = \frac{7}{10} \times 180 = 7 \times 18 = 126

The new value is 126.

Practice

i. Increase:

a) 100 by 40 %
b) 340 by 60 %
c) 1600 by 73 %
d) 145 by 120 %

ii. Decrease

a) 100 by 30 %
b) 350 by 40 %
c) 3400 by 28 %
d) 250 by 37 \frac{1}{5} \%
iii. Solve the following:

a) The population of the world is about 6500 million. By 2050 scientists think the population will have increased by about 40%. What will the world’s population be in 2050?

b) The owner of a clothes shop in Lashio offers a discount on the clothes in her shop. (Discount is money taken away from the price of something).

The table below shows the original price (before the discount) of the clothes and the percentage discount. Complete the table by calculating the new prices.

<table>
<thead>
<tr>
<th>Type of clothing</th>
<th>Original price</th>
<th>Discount</th>
<th>New price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeans</td>
<td>9000 kyat</td>
<td>35 %</td>
<td></td>
</tr>
<tr>
<td>T-Shirt</td>
<td>2500 kyat</td>
<td>25 %</td>
<td></td>
</tr>
<tr>
<td>Sandals</td>
<td>1750 kyat</td>
<td>10 %</td>
<td></td>
</tr>
<tr>
<td>Jacket</td>
<td>13000 kyat</td>
<td>50 %</td>
<td></td>
</tr>
<tr>
<td>Shoes</td>
<td>5500 kyat</td>
<td>20 %</td>
<td></td>
</tr>
<tr>
<td>Shirt</td>
<td>4250 kyat</td>
<td>15 %</td>
<td></td>
</tr>
</tbody>
</table>

6.5 Finding Percentage Increases and Decreases

Example - Naw Cleo bought a motorbike for 40 lak. She sold it one year later for 34 lak. What is the percentage decrease in the price?

First calculate the difference between the two prices.

Loss = 40000 - 34000 = 6000

Then calculate the difference as a fraction of the original price.

\[
\frac{6000}{40000} = \frac{6}{40} = 0.15 = 15 \%
\]

Change this fraction to a percentage to get the percentage decrease in price.

Think

In 1984 there were 10,000 refugees living on the Thai-Burma border. By 1994 the number had increased to 80,000. Can you calculate the percentage increase in the numbers of refugees?

Practice

i. Find the percentage price increases

a) Buying price 120 kyat, selling price 150 kyat

b) Buying price 160 kyat, selling price 200 kyat

c) Buying price 550 kyat, selling price 605 kyat

ii. Find the percentage price decreases

a) Buying price 200 kyat, selling price 160 kyat

b) Buying price 1250 kyat, selling price 1000 kyat

c) Buying price 640 kyat, selling price 160 kyat
6.6 Compound Percentage Problems
Sometimes a percentage increase or decrease happens more than once.

**Example** - Htaw Pai bought a motorbike for 350,000 kyat. The value of the bike decreased by 10% each year. What is the value of the bike after 3 years?

After 1 year the value of the bike is \(\frac{90}{100} \times 350,000 = 315,000\)

After 2 years the value of the bike is \(\frac{90}{100} \times 315,000 = 283,500\)

After 3 years the value of the bike is \(\frac{90}{100} \times 283,500 = 255,150\)

In the above example we calculated the answer in 3 steps. We also use this formula to calculate the answer in one step:

\[
\text{Value after } n \text{ years} = \text{original value} \times \text{multiplier}^n
\]

In this example multiplier \(\frac{90}{100} = 0.9\)

**Practice**

i. Use the formula to find the value of Htaw Bai’s motorbike after 5 years. (Use the fact that \(0.9^5 = 0.59\) to 2 decimal places).

The following two problems deal with compound percentage increases

ii. The population of Israel is 7,000,000 to the nearest million. This figure is increasing by around 2% each year. What will be the population of Israel in 20 years? (Use the fact that \(1.02^{20} = 1.5\) to 1 decimal place).

iii. China uses 6.6 million barrels of oil everyday. The amount the country uses has increased by an average of 7% per year since 1990. If this growth continues how many barrels of oil will China use per day in 5 years? (Use the fact that \(1.07^5 = 1.4\) to 1 decimal place).

---

<table>
<thead>
<tr>
<th>Type of clothing</th>
<th>Original price</th>
<th>Discount</th>
<th>New price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longyi</td>
<td>2000 kyat</td>
<td></td>
<td>1200 kyat</td>
</tr>
<tr>
<td>Earrings</td>
<td>5000 kyat</td>
<td></td>
<td>2000 kyat</td>
</tr>
<tr>
<td>Socks</td>
<td>2000 kyat</td>
<td></td>
<td>1200 kyat</td>
</tr>
<tr>
<td>Skirt</td>
<td>3500 kyat</td>
<td></td>
<td>2450 kyat</td>
</tr>
<tr>
<td>Underpants</td>
<td>3500 kyat</td>
<td></td>
<td>1400 kyat</td>
</tr>
</tbody>
</table>
7. Ratio

7.1 Introduction
We use ratios to compare related quantities.

Example - Nang Hseng and Sai Lek have 18 grandchildren: 10 grandsons and 8 granddaughters. The ratio of the number of grandsons to the total number of grandchildren is 10 to 18.

We can write this as a fraction: \(\frac{\text{Number of grandsons}}{\text{Total number of grandchildren}} = \frac{10}{18} = \frac{5}{9}\)

or as a ratio: \(\text{Number of grandsons : total number of grandchildren} = 10 : 18 = 5 : 9\).

We simplify ratios in the same way as we simplify fractions.

Think

a) What is the ratio of the number of granddaughters to the number of grandchildren? Simplify your answer.

b) What is the ratio of the number of granddaughters to the number of grandsons?

7.2 Simplifying Ratios

Example - Simplify the ratio 2 cm to 1 m.
Before we compare, the quantities must have the same units.

\(2 \text{ cm} : 1 \text{ m} = \frac{2 \text{ cm}}{100 \text{ cm}} = 1 : 50\)

We do not need to write the units but we say, ‘the ratio of 2 cm to 1 m is 1 to 50’.

Example - Simplify the ratio 24 to 72.

\(24 : 72 = 3 \times 8 : 9 \times 8 = 3 : 9\)

\(= 1 \times 3 : 3 \times 3 = 1 : 3\)

Example - Simplify the ratio \(\frac{2}{3} : \frac{1}{5}\).

We need to multiply by the lowest common multiple to make whole numbers

\(\frac{2}{3} : \frac{1}{5} = 2 \times 5 : 1 \times 3 = \frac{10}{3}\)

\(= 5 \times 2 : 3 \times 4 = 10 : 12 = 5 : 6\)

Practice

i. Simplify the ratios:

\(\text{a) } 8 : 10 \quad \text{b) } 12 : 18 \quad \text{c) } 32 : 96 \quad \text{d) } 12 \text{ cm to } 2 \text{ m} \quad \text{e) } 4 : 6 : 10\)

\(\text{f) } 144 : 12 : 24 \quad \text{g) } 7 : 56 : 49 \quad \text{h) } 5 : \frac{1}{3} \quad \text{i) } \frac{1}{3} : \frac{3}{4} \quad \text{j) } \frac{5}{4} : \frac{6}{7} \quad \text{k) } \frac{1}{6} : \frac{1}{8} : \frac{1}{12}\)

ii. Solve the following:

a) Moe Aye walks 2 km to school in 40 minutes. Nai Aung cycles 5 km to school in 15 minutes. What is the ratio of i) Moe Aye’s distance to Nai Aung’s distance and ii) Moe Aye’s time to Nai Aung’s time.

b) Earlier we learnt that Naw Kaw’s harvest was \(5 \frac{1}{2}\) kg of corn, \(2 \frac{1}{4}\) kg of green beans and 7 kg of cucumber. Find the ratio of the amount of vegetables to one another.

c) Find the ratio of the sides of the triangle to one another.
7.3 Finding Quantities

Example - Find the missing number: ____ : 4 = 3 : 5
Fill the gap with an $X$, $X : 4 = 3 : 5$.

Write as fractions, $\frac{X}{4} = \frac{3}{5}$
Multiply by 4, $4 \times \frac{X}{4} = 4 \times \frac{3}{5}$
This gives $X = \frac{12}{5} = 2 \frac{2}{5}$
So, $2 \frac{2}{5} : 4 = 3 : 5$

Example - Two distances are in the ratio 12 : 5. The first distance is 8 km. Find the second distance.
Let $X$ be the second distance, $8 : X = 12 : 5$.
So, $\frac{X}{8} = \frac{5}{12}$.
Multiply by 8, $8 \times \frac{X}{8} = 8 \times \frac{5}{12}$
This gives $X = \frac{10}{3} = 3 \frac{1}{3}$
So the second distance is $3 \frac{1}{3}$ km

Practice
i. Find the missing numbers:
   a) 2 : 5 = 4 : ___
   b) : 6 = 12 : 18
   c) 9 : 6 = : 4
   d) : 9 = 3 : 5
   e) 9 : 5 = : 4
   f) : 3 = 5 : 2
   g) 3 : = 5 : 1
   h) : 6 = 5 : 8

ii. Find the second quantity:
   a) Two distances are in the ratio 12 : 8. The first distance is 8 km. Find the second distance.
   b) If the ratio in question a) was 8 : 12, what would the second distance be?  
   c) The ratio of Shine's money to Htoo Chit's money is 8 : 10. Htoo Win has 25 dollars. How much money does Shine have?
   d) In the rectangle, the ratio of length to width is 9 : 4. The length is 24 cm. What is the width?

7.4 Sharing Quantities

Example - Share 60 baht between Hser Moo and Hsa Say in the ratio 3 : 2.

<table>
<thead>
<tr>
<th>number of shares needed:</th>
<th>3 + 2 = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>value of 1 share:</td>
<td>60 ÷ 5 = 12</td>
</tr>
<tr>
<td>value of 2 shares:</td>
<td>2 x 12 + 24</td>
</tr>
<tr>
<td>value of 3 shares:</td>
<td>3 x 12 = 36</td>
</tr>
</tbody>
</table>

Hser Moo gets 3 shares, which is 36 baht. Hsa Say gets 2 shares, which is 24 baht.

Think
Look at the amounts that Min Min and Bo Aung received. How do we know if the answer is right?
How much would they get if the ratio was 2 : 4?

Practice
   a) Share 80 kyat in the ratio 3 : 2
   b) Share 32 kyat in the ratio 3 : 5
   c) Share 45 kyat in the ratio 4 : 5
   d) Divide 26 kyat in the ratio 4 : 5

7.5 Map Scales

We use map scales to measure real distances between places. Look at the map on the next page.
The scale is 1 : 100 000. This means 1 cm on the map is 100 000 cm in real distances.
100 000 cm = 1000 m = 1 km, so 1 cm on the map is 1 km in real distances.
8. Indices

8.1 Positive Indices

In Section 2.3 we learnt about numbers with positive indices. We learnt how to write in index form:

\[ 3 \times 3 \times 3 \times 3 = 3^4 \]

And how to find the value of numbers in index form:

\[ 2^5 = 2 \times 2 \times 2 \times 2 \times 2 = 32 \]

Think

a) Complete the statement to write \( 2^5 \times 2^3 \) as a single number in index form:

\[ 2^5 \times 2^3 = 2^{\boxed{\text{?}}} = \boxed{\text{?}} \]

b) Fill in the missing word and complete the statement:

We can divide different powers of the same number by \( \boxed{\text{?}} \) the indices:

\[ 2^5 \div 2^3 = 2^{\boxed{\text{?}}} = \boxed{\text{?}} \]

Practice

Write as a single number in index form:

\[ \begin{align*}
\text{a) } & 3^3 \times 3^2 \\
\text{b) } & 7^5 \times 7^3 \\
\text{c) } & 5^4 \times 5^4 \\
\text{d) } & 12^4 \times 12^6 \\
\text{e) } & 4^4 \div 4^2 \\
\text{f) } & 10^6 \div 10^3 \\
\text{g) } & 2^3 \div 2^3 \\
\text{h) } & 6^3 \div 6^7 \\
\text{i) } & 15^3 \div 15^4 \\
\text{j) } & 2^3 \times 2^3 \times 2^3 \\
\text{k) } & 4^3 \times 4^3 \div 4^4 \\
\text{l) } & 3^4 \div 3^2 \times 3^4
\end{align*} \]

Look at question \( g \). The answer is \( 2^3 \div 2^3 = 2^0 \).

Also, \( 2^3 \div 2^3 = \frac{2 \times 2 \times 2}{2 \times 2 \times 2} = 1 \).

Any number with an index of zero is equal to one:

\[ 2^0 = 2^5 \div 2^5 = 1. \]
8.2 Negative Indices

Example - Find the value of $2^3 \div 2^5$

Subtracting the indices gives:
$$2^3 \div 2^5 = 2^{3-5} = 2^{-2}$$

As a fraction we have:
$$\frac{2^3}{2^5} = \frac{2 \times 2 \times 2}{2 \times 2 \times 2 \times 2} = \frac{1}{2^2}$$

The value of $2^3 \div 2^5 = 2^{-2} = \frac{1}{2^2}$. Also, $2^{-2}$ is the reciprocal of $2^2$.

8.3 Standard Form

In Section 4.6, you were asked to guess the distance to the moon. The answer is 400,000 km. When measuring large numbers like this, scientists use standard form:

$$400,000 = 4 \times 10 \times 10 \times 10 \times 10 \times 10 = 4 \times 10^5$$

Standard form is a number between 1 and 10 multiplied by a power of 10.

Example - Write 68,000 in standard form.

$$68,000 = 6.8 \times 10,000 = 6.8 \times 10^4$$

Practice

i. Write the following in standard form:

a) 2500
g) 0.79
b) 630
h) 0.0048
c) 39.070
i) 0.0805
d) 260,000
j) 0.08808
e) 4,060,000
k) 0.684
f) 80,000,000,000
l) 0.000 000 000 073

8.4 Significant Figures

Think

Ti Reh is 1678 mm tall. How tall is he:

a) to the nearest 10 mm?
b) to the nearest cm?
c) in metres (to 2 d.p.)?
d) in km (to 5 d.p.)?

The numbers 1, 6 and 8 appear in each answer. 1, 6 and 8 are called the significant figures (s.f.). Each answer is given to 3 significant figures. The first significant figure is 1. The second is 6. The third is 8.

In standard form the first significant figure is the number in the tens column.

Example - Find:
a) the 1st significant figure and
b) the 3rd significant figure of 0.001503.

In standard form 0.001503 = 1.503 x 10^{-3},

a) The first significant figure is 1.
b) The third significant figure is 0.

Practice

Write down the significant figure given in brackets.

a) 36.2 (1st)
d) 34.807 (4th)
b) 0.0867 (2nd)
e) 0.07603 (3rd)
c) 3.786 (3rd)
8.6 Square Roots

We know that $3^2 = 9$. 3 is the square root of 9. In section 3.4 we learnt that $(-3)^2 = 9$. -3 is also the square root of 9. In this module we will study positive square roots.

The square root symbol is \( \sqrt{\,} \). We write $\sqrt{9} = 3$.

**Example** - Find the square root of 0.49.

0.49 = 0.7$^2$. So, $\sqrt{0.49} = 0.7$

**Example** - Give 32685 correct to 1 s.f.

32685 = 3.2685 x 10$^4$.

3 is the first s.f. The 2nd s.f. is less than 5, so we round down.

So, 32685 = 3 x 10$^4$ = 30000 to 1 s.f.

**Example** - Give 0.02186 correct to 3 s.f.

0.02186 = 2.186 x 10$^{-2}$.

Here the 4th s.f. is greater than 5 so we round up.

So, 0.02186 = 2.19 x 10$^{-2}$ = 0.0219 to 3 s.f.

**Practice**

Find the following numbers correct to 1 s.f.

- a) 59727
- b) 476
- c) 586359
- d) 26
- e) 4099
- f) 4396359

Find the following numbers correct to 2 s.f.

- a) 4674
- b) 58700
- c) 9973
- d) 72601
- e) 444
- f) 53908

Find the following numbers correct to 3 s.f.

- a) 0.008463
- b) 5.8374
- c) 46.8451
- d) 7.5078
- e) 369.649
- f) 0.0078547

In section 2.4 we learnt about prime factors. Prime factors can help us find square roots.

**Example** - Find the square root of 784.

As a product of prime factors $784 = 2^2 \times 2^2 \times 7^2$.

We can write $2^2 \times 2^2 \times 7^2 = (2 \times 2 \times 7)^2 = 28^2$.

So, $784 = 28^2$ and $\sqrt{784} = \sqrt{28^2} = 28$

The numbers above have whole number square roots. Most numbers do not. If we do not have a calculator, we have to estimate the square root.

**Example** - Find the square root of 23.

We know that $16 < 23 < 25$. If we take the square roots we have: $\sqrt{16} < \sqrt{23} < \sqrt{25} = 4 < \sqrt{23} < 5$

We learn that $\sqrt{23}$ is between 4 and 5. So, to 1 significant figure $\sqrt{23} = 4$.

**Practice**

Find the first significant figure of the square roots of these numbers:

- a) 17
- b) 10
- c) 39
- d) 79
- e) 90
8.7 Surds

The area of the square is 20 cm. The length of the side is \( x \) cm. So,

\[
x^2 = 20
\]

\[
x = \sqrt{20}
\]

If we use a calculator we would find that \( x = 4.47 \) to 2 decimal places. To represent the number exactly we can just write \( x = \sqrt{20} \). A number written exactly in this form is called a \textbf{surd}. Other examples of numbers in surd form are: \( \sqrt{3}, 2 - \sqrt{5}, \frac{\sqrt{2}}{2} \)

**Example - Simplify** \( \sqrt{12} \)

\[
\sqrt{12} = \sqrt{4 \times 3} = \sqrt{4} \times \sqrt{3} = 2\sqrt{3}
\]

**Example - Rationalise** \( \frac{1}{3\sqrt{5}} \)

We need to multiply the top and bottom by \( \sqrt{5} \)

\[
\frac{1}{3\sqrt{5}} = \frac{1}{3\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}} = \frac{\sqrt{5}}{3 \times 5} = \frac{\sqrt{5}}{15}
\]

**Example - Rationalise** \( \frac{\sqrt{2}}{5 + \sqrt{2}} \)

Multiply the top and bottom by \( 5 - \sqrt{2} \)

\[
\frac{\sqrt{2}}{5 + \sqrt{2}} = \frac{\sqrt{2}(5 - \sqrt{2})}{(5 + \sqrt{2})(5 - \sqrt{2})}
\]

\[
= \frac{5\sqrt{2} - 2}{25 - 5\sqrt{2} + 5\sqrt{2} - 2} = \frac{5\sqrt{2} - 2}{23}
\]

* Rationalise means to remove the square root in the denominator

**Practice**

i. a) \( \frac{1}{\sqrt{7}} \)  b) \( \frac{1}{\sqrt{17}} \)  c) \( \frac{\sqrt{32}}{\sqrt{2}} \)  d) \( \frac{\sqrt{5}}{3 + \sqrt{5}} \)  e) \( \frac{\sqrt{7}}{2 - \sqrt{7}} \)  f) \( \frac{\sqrt{5}}{2 - \sqrt{3}} \)

ii. The lengths of the sides of a rectangle are \( 3 + \sqrt{5} \) and \( 3 - \sqrt{5} \). Find:

a) The perimeter of the rectangle  

b) The area of the rectangle

iii. The rectangle shown has sides \( 2\sqrt{2} \) and \( \sqrt{3} \).

Find the length of the diagonal (using Pythagoras’ theorem)
9. Estimation

9.1 Using Significant Figures to Estimate

At the beginning of this module, we learnt how to use rounding to estimate answers. We can also use significant figures to give estimates.

Example - Correct each number to 1 s.f. and give an estimate:

a) \(9.524 \times 0.0837\)
   \[9.524 \times 0.0837 \approx 10 \times 0.08 = 0.8\]
   This symbol means ‘approximately equal to’.

b) \(0.048 \times 3.275\)
   \[0.048 \times 3.275 \approx 0.05 \times 3 = 0.15 = 0.4\]
   The answer is given to 1 s.f.

Practice
Correct each number to 1 s.f. and give an estimate:

a) \(4.78 \times 23.7\)
   \[5.6\]

b) \(0.0674 \times 5.24\)
   \[0.636\]

c) \(3.87 \times 5.24\)
   \[20\]

d) \(0.636 \times 2.63\)
   \[5.57\]

Activity - Look at the exercise below and match the calculation with the estimate by correcting each number to 1 significant figure. When you have finished make your own exercise by writing some calculations and corresponding estimates. Give your exercise to your partner to solve.

\[
\begin{align*}
\text{Example - Write the lower bound and upper bound for 4.7, correct to 1 decimal place.} \\
\text{The lower bound is 4.65} \\
\text{The upper bound is 4.75}
\end{align*}
\]

9.2 Upper and Lower Bounds

Consider the measurement:

\(237\) mm, correct to the nearest millimetre

‘correct to the nearest millimetre’ means that the measurement has been rounded up or down.

The actual length could be anywhere between \(236.5\) mm and \(237.5\) mm.

\[
\begin{align*}
\text{237 mm, correct to the nearest millimetre} \\
\text{‘correct to the nearest millimetre’ means that the measurement has been rounded up or down.} \\
\text{The actual length could be anywhere between 236.5 mm and 237.5 mm.}
\end{align*}
\]

Example - Write the lower bound and upper bound for 4.7, correct to 1 decimal place.

The lower bound is 4.65
The upper bound is 4.75

Practice
Write the upper and lower bound for each measurement

i. a) To the nearest 10: 30, 180, 3020, 10
   b) To 1 decimal place: 2.9, 13.6, 0.3, 157.5
ii. Complete the table attendances at football stadiums

<table>
<thead>
<tr>
<th>Stadium</th>
<th>Attendance to the nearest thousand</th>
<th>Lower bound</th>
<th>Upper bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manchester United</td>
<td>71,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenal</td>
<td>42,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>West Ham</td>
<td>23,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liverpool</td>
<td>13,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morecambe</td>
<td>1,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Example** - A rectangle has width 4.3 cm and length 7.5 cm, correct to the nearest 0.1 cm. Find:

a) The lower bounds of the length and width
b) The upper bounds of the length and width
c) The maximum possible area

![Rectangle Diagram]

a) The lower bound for the length is 7.45 cm
   The lower bound for the width is 4.25 cm

b) The upper bound for the length is 7.55 cm
   The upper bound for the width is 4.35 cm

c) The maximum possible area is $7.55 \text{ cm} \times 4.35 \text{ cm} = 32.8425 \text{ cm}^2$
   (Using the upper bounds)

**Practice**

i. Two circles have radius $r = 1.7$, correct to 1 decimal place and $R = 31$, correct to 3 significant figures.
   a) Write down the upper and lower bounds of $r$ and $R$.
   b) Find the smallest possible value of $R - r$.

ii. The length of each side of a square is 3.7 cm, correct to 2 significant figures.
   a) Find the maximum value for the perimeter of the square
   b) Find the minimum value for the perimeter of the square

iii. Find the upper bound and lower bound of:
   a) The area of a rectangle with sides 6 cm and 8 cm, both correct to the nearest centimetre
   b) The perimeter of a square with side 7.5 cm, correct to the nearest centimetre
   c) The area of a triangle with base 8 cm and height 6 cm, correct to the nearest centimetre
Glossary of Keywords

Here is a list of Mathematical words from this module. The section where the word appears is given in brackets. Find the words and what they mean - your teacher will test your memory soon!

Whole number (1.1)  
Value (1.2)  
Order (1.2)  
Rounding (1.3)  
Estimate (1.3)  
Round up/Round down (1.3)  
Property (1.4)  
Addition (1.4)  
Subtraction (1.4)  
Commutative Law (1.4)  
Multiplication (1.5)  
Division (1.5)  
Remainder (1.5)  
Operation (1.6)  
Brackets (1.6)  
Powers (1.6)  
Order of operations (1.6)  
Factor (2.1)  
Product (2.1)  
Multiple (2.1)  
Prime Number (2.2)  
Index (2.3)  
Indices (2.3)  
Prime Factor (2.4)  
Highest Common Factor (H.C.F.) (2.5)  
Lowest Common Multiple (L.C.M.) (2.6)  
Postive number (3.1)  
Negative number (3.1)  
Temperature (3.2)  
Degrees Celsius/Centigrade (3.2)  
Expand (3.4)  
Decimal Point (4.1)  
Tenths (4.1)  
Hundredths (4.1)  
Thousandths (4.1)  
Perimeter (4.2)  
Rectangle (4.2)  
Metric Units (4.4)  
Length (4.4)  
Metre (m) (4.4)  
Kilometre (km) (4.4)  
Centimetre (cm) (4.4)  
Millimetre (mm) (4.4)  
Mass (4.5)  
Tonne (t) (4.5)  
Gram (g) (4.5)  
Kilogram (kg) (4.5)  
Pentagon (4.8)  
Decimal Places (d.p.) (4.9)  
Numerator (5.1)  
Denominator (5.1)  
Proper Fraction (5.1)  
Improper Fraction (5.2)  
Mixed Numbers (5.2)  
Equivalent Fractions (5.3)  
Simplify (5.4)  
Common Factors (5.4)  
Cancelling (5.4)  
Lowest Terms (5.4)  
Fraction Wall (5.5)  
Common Denominator (5.5)  
Recurring Decimal (5.6)  
Recur (5.6)  
Invert (5.10)  
Percent (6.1)  
Percentages (6.1)  
Quantity (6.3)  
Increase (6.4)  
Decrease (6.4)  
Discount (6.4)  
Ratio (7.1)  
Related Quantities (7.1)  
Reciprocal (8.2)  
Standard Form (8.3)  
Significant Figures (8.4)  
Approximately (8.5)  
Surd (8.7)  
Rationalise (8.7)  
Lower Bound (9.2)  
Upper Bound (9.2)
Assessment

This assessment is written to test your understanding of the module. Review the work you have done before taking the test. Good luck!

Part 1 - Vocabulary
These questions test your knowledge of the keywords from this module. Complete the gaps in each sentence by using the words in the box. Be careful, there are 20 words but only 15 questions!

<table>
<thead>
<tr>
<th>commutative</th>
<th>equivalent</th>
<th>property</th>
<th>factor</th>
<th>approximately</th>
<th>kilometres</th>
</tr>
</thead>
<tbody>
<tr>
<td>reciprocal</td>
<td>perimeter</td>
<td>length</td>
<td>estimate</td>
<td>rationalise</td>
<td>numerator</td>
</tr>
<tr>
<td>metres</td>
<td>brackets</td>
<td>multiple</td>
<td>operations</td>
<td>denominator</td>
<td>simplify</td>
</tr>
<tr>
<td>standard form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) $2^2$ is the ________________ of $2^2$.

b) We ________________ to remove the square root in the denominator.

c) The distance between London and Manchester is measured in ________________.

d) When calculating we expand the ________________ before multiplying.

e) Multiplication and division are ________________.

f) 2 is a ________________ of 18.

g) 18 is a ________________ of 2.

h) The ________________ is the distance all the way around.

i) The ________________ is the bottom number in a fraction.

j) ________________ fractions have the same value.

k) If we ________________ $\frac{9}{24}$ the answer is $\frac{3}{8}$.

l) $0.666666666666666$... is a ________________ decimal.

m) Scientists use ________________ to write large numbers.

n) A proper fraction has a ________________ that is less than the denominator.

o) $\approx$ means ________________ equal to.
Part 2 - Mathematics

These questions test your understanding of the Mathematics in this module. Try to answer all the questions. Write your calculations and answers on separate paper.

1. Write these numbers as words: a) 201  b) 1021  c) 112354

2. Write these as numbers:
   a) seven thousand six hundred and two  
   b) thirty two thousand and fifty seven  
   c) one hundred and eleven thousand

3. Solve:
   a) \(3021 + 926\)  
   b) \(9217 + 3216 + 824\)  
   c) \(526 - 316\)  
   d) \(1237 - 524\)  
   e) Subtract five thousand one hundred and forty seven from nine thousand three hundred and forty two.

4. Solve:
   a) \(798 \times 583\)  
   b) \(7281 \times 694\)  
   c) \(2050 \div 19\)  
   d) \(7974 \div 17\)

5. Solve:
   a) \(7 + 3 \times 2 - 8 \div 2\)  
   b) \(19 + 3 \times 2 - 4 \div 2\)  
   c) \(6 \times 8 - 18 \div (2 + 4)\)  
   d) \(5 + (2 \times 10 - 5) - 6\)

6. a) Write down all the multiples of 5 between 19 and 49.  
    b) Write down all the multiples of 11 between 50 and 100.

7. Which of these numbers are prime numbers:
   41, 57, 82, 91, 101, 126, 135

8. Use a factor tree to write each number as a product of prime factors:
   a) 24  
   b) 136  
   c) 528

9. Find the Highest Common Factor of:
   a) 8, 16  
   b) 36, 48  
   c) 18, 20, 36

10. Find the Lowest Common Multiple of:
    a) 6, 16  
    b) 36, 16  
    c) 85, 50

11. Solve:
    a) \(5 + (-1) - (-3)\)  
    b) \(8 - (-7) + 2\)  
    c) \(5 - (6 - 10)\)  
    d) Subtract 7 from -5

12. Complete the statements:
    a) A negative number divided by a negative number gives a __________ answer.  
    b) A positive number multiplied by a __________ number gives a negative answer.  
    c) A __________ number multiplied by a negative number gives a __________ answer.

13. Copy and complete the table so that each row, column and diagonal is equal to 18.9.

<table>
<thead>
<tr>
<th></th>
<th>8.1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5.4</td>
<td>6.3</td>
<td>7.2</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>10.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

14. The perimeter of the shape is 27 cm. What is the length of the fourth side?

15. Find the following. Write your answer in the units given in brackets:
    a) 8 m - 52 cm (cm)  
    b) 20 g - 120 mg (mg)  
    c) 3.9 m + 582 mm (cm)
16. Solve:
   a) $2.16 \times 0.082$  
   b) $0.081 \times 0.32$  
   c) $8.2 \times 2.8$  
   d) $9.8 \div 1.4$  
   e) $10.24 \div 3.2$

17. 50 students were asked ‘What is your favourite sport?’. The results are in the table.

<table>
<thead>
<tr>
<th>football</th>
<th>caneball</th>
<th>volleyball</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>25</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

What fraction chose (write the answer in its lowest terms):
   a) football?  
   b) caneball?  
   c) volleyball?

18. Write these as mixed numbers:
   a) $\frac{41}{8}$  
   b) $\frac{67}{5}$

19. Write these as improper fractions:
   a) $\frac{2}{7}$  
   b) $\frac{7}{9}$

20. Solve the following:
   a) $\frac{1}{4} + \frac{7}{10}$  
   b) $\frac{5}{8} - \frac{2}{7}$  
   c) $\frac{4}{5} \times \frac{15}{16}$  
   d) $\frac{28}{27} - \frac{4}{9}$

21. Write these percentages as fractions in their lowest terms:
   a) 45%  
   b) 56.5%  
   c) 9.25%

22. Calculate the following:
   a) 20% of 200  
   b) 37% of 9 m

23. Increase:
   a) 150 by 50%  
   b) 350 by 20%

24. Decrease:
   a) 350 by 40%  
   b) 750 by 13%

25. Write ratios equivalent to the one in the centre. What is the simplest form of this ratio?

   12 : 18 : 30

   24 : 36 : 60

26. Two lengths are in the ratio 3 : 7. The second length is 42 cm. What is the first length?

27. Write as a single number in index form:
   a) $5^5 \times 5^5$  
   b) $7^7 \div 7^3$  
   c) $6^3 \div 6^3$

28. Write the following in standard form:
   a) 25,000  
   b) 765  
   c) 9,000,000,000

29. Write the following to: 3 significant figures:
   a) 0.006758  
   b) 22.8762  
   c) 542.482

30. Rationalise
   a) $\frac{3}{\sqrt{5}}$  
   b) $\frac{1}{\sqrt{11}}$  
   c) $\frac{\sqrt{11}}{\sqrt{11} - 7}$

31. Write the upper and lower bounds for each measurement
    To the nearest 0.5 unit: 4.5, 7.5, 16.5